Projekteja vuodessa
Abstrakti
Bayesian networks are popular probabilistic models that capture the conditional dependencies among a set of variables. Inference in Bayesian networks is a fundamental task for answering probabilistic queries over a subset of variables in the data. However, exact inference in Bayesian networks is NP-hard, which has prompted the development of many practical inference methods. In this paper, we focus on improving the performance of the junction-tree algorithm, a well-known method for exact inference in Bayesian networks. In particular, we seek to leverage information in the workload of probabilistic queries to obtain an optimal workload-aware materialization of junction trees, with the aim to accelerate the processing of inference queries. We devise an optimal pseudo-polynomial algorithm to tackle this problem and discuss approximation schemes. Compared to state-of-the-art approaches for efficient processing of inference queries via junction trees, our methods are the first to exploit the information provided in query workloads. Our experimentation on several real-world Bayesian networks confirms the effectiveness of our techniques in speeding-up query processing.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings 25th International Conference on Extending Database Technology (EDBT 2022) |
Kustantaja | OpenProceedings.org |
Sivut | 65–77 |
Sivumäärä | 13 |
ISBN (elektroninen) | 978-3-89318-086-8 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2022 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Extending Database Technology - Edinburgh, Iso-Britannia Kesto: 29 maalisk. 2022 → 1 huhtik. 2022 Konferenssinumero: 25 |
Julkaisusarja
Nimi | Advances in Database Technology |
---|---|
Vuosikerta | 25 |
ISSN (painettu) | 2367-2005 |
Conference
Conference | International Conference on Extending Database Technology |
---|---|
Maa/Alue | Iso-Britannia |
Kaupunki | Edinburgh |
Ajanjakso | 29/03/2022 → 01/04/2022 |
Sormenjälki
Sukella tutkimusaiheisiin 'Workload-Aware Materialization of Junction Trees'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 3 Päättynyt
-
SoBigDataPlusPlus: Integrated Infrastructure for Social Mining and Big Data Analytics
Lampinen, J. (Vastuullinen tutkija)
01/01/2020 → 31/12/2024
Projekti: EU: Framework programmes funding
-
MLDB: Model Management Systems: Machine learning meets Database Systems (MLDB)
Gionis, A. (Vastuullinen tutkija)
01/09/2019 → 31/08/2023
Projekti: Academy of Finland: Other research funding
-
Adaptiivinen ja älykäs data
Gionis, A. (Vastuullinen tutkija)
01/01/2018 → 30/06/2022
Projekti: Academy of Finland: Other research funding