Projekteja vuodessa
Abstrakti
Bayesian networks are general, well-studied probabilistic models that capture dependencies among a set of variables. Variable Elimination is a fundamental algorithm for probabilistic inference over Bayesian networks. In this paper, we propose a novel materialization method, which can lead to significant efficiency gains when processing inference queries using the Variable Elimination algorithm. In particular, we address the problem of choosing a set of intermediate results to precompute and materialize, so as to maximize the expected efficiency gain over a given query workload. For the problem we consider, we provide an optimal polynomial-time algorithm and discuss alternative methods. We validate our technique using real-world Bayesian networks. Our experimental results confirm that a modest amount of materialization can lead to significant improvements in the running time of queries, with an average gain of 70%, and reaching up to a gain of 99%, for a uniform workload of queries. Moreover, in comparison with existing junction tree methods that also rely on materialization, our approach achieves competitive efficiency during inference using significantly lighter materialization.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings - 2021 IEEE 37th International Conference on Data Engineering, ICDE 2021 |
Kustantaja | IEEE |
Sivut | 1152-1163 |
Sivumäärä | 12 |
ISBN (elektroninen) | 9781728191843 |
DOI - pysyväislinkit | |
Tila | Julkaistu - huhtik. 2021 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Data Engineering - Virtual, Online, Chania, Kreikka Kesto: 19 huhtik. 2021 → 22 huhtik. 2021 Konferenssinumero: 37 |
Julkaisusarja
Nimi | Proceedings - International Conference on Data Engineering |
---|---|
Vuosikerta | 2021-April |
ISSN (painettu) | 1084-4627 |
Conference
Conference | International Conference on Data Engineering |
---|---|
Lyhennettä | ICDE |
Maa/Alue | Kreikka |
Kaupunki | Chania |
Ajanjakso | 19/04/2021 → 22/04/2021 |
Sormenjälki
Sukella tutkimusaiheisiin 'Workload-aware materialization for efficient variable elimination on Bayesian networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.-
SoBigDataPlusPlus: Integrated Infrastructure for Social Mining and Big Data Analytics
Lampinen, J. (Vastuullinen tutkija), Roy, C. (Projektin jäsen) & Bhattacharya, K. (Projektin jäsen)
01/01/2020 → 31/12/2024
Projekti: EU: Framework programmes funding
-
MLDB: Model Management Systems: Machine learning meets Database Systems (MLDB)
Gionis, A. (Vastuullinen tutkija), Aslay, C. (Projektin jäsen), Ciaperoni, M. (Projektin jäsen), Xiao, H. (Projektin jäsen), Matakos, A. (Projektin jäsen) & Muniyappa, S. (Projektin jäsen)
01/09/2019 → 31/08/2023
Projekti: Academy of Finland: Other research funding