Workload-aware materialization for efficient variable elimination on Bayesian networks

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)
93 Lataukset (Pure)

Abstrakti

Bayesian networks are general, well-studied probabilistic models that capture dependencies among a set of variables. Variable Elimination is a fundamental algorithm for probabilistic inference over Bayesian networks. In this paper, we propose a novel materialization method, which can lead to significant efficiency gains when processing inference queries using the Variable Elimination algorithm. In particular, we address the problem of choosing a set of intermediate results to precompute and materialize, so as to maximize the expected efficiency gain over a given query workload. For the problem we consider, we provide an optimal polynomial-time algorithm and discuss alternative methods. We validate our technique using real-world Bayesian networks. Our experimental results confirm that a modest amount of materialization can lead to significant improvements in the running time of queries, with an average gain of 70%, and reaching up to a gain of 99%, for a uniform workload of queries. Moreover, in comparison with existing junction tree methods that also rely on materialization, our approach achieves competitive efficiency during inference using significantly lighter materialization.

AlkuperäiskieliEnglanti
OtsikkoProceedings - 2021 IEEE 37th International Conference on Data Engineering, ICDE 2021
KustantajaIEEE
Sivut1152-1163
Sivumäärä12
ISBN (elektroninen)9781728191843
DOI - pysyväislinkit
TilaJulkaistu - huhtik. 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Data Engineering - Virtual, Online, Chania, Kreikka
Kesto: 19 huhtik. 202122 huhtik. 2021
Konferenssinumero: 37

Julkaisusarja

NimiProceedings - International Conference on Data Engineering
Vuosikerta2021-April
ISSN (painettu)1084-4627

Conference

ConferenceInternational Conference on Data Engineering
LyhennettäICDE
Maa/AlueKreikka
KaupunkiChania
Ajanjakso19/04/202122/04/2021

Sormenjälki

Sukella tutkimusaiheisiin 'Workload-aware materialization for efficient variable elimination on Bayesian networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä