Why state-of-the-art deep learning barely works as good as a linear classifier in extreme multi-label text classification

Mohammadreza Mohammadnia Qaraei, Sujay Khandagale, Rohit Babbar

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

60 Lataukset (Pure)

Abstrakti

Extreme Multi-label Text Classification (XMTC) refers to supervised learning of a classifier which can predict a small subset of relevant labels for a document from an extremely large set. Even though deep learning algorithms have surpassed linear and kernel methods for most natural language processing tasks over the last decade; recent works show that state-of-the-art deep learning methods can only barely manage to work as well as a linear classifier for the XMTC task.
The goal of this work is twofold : (i) to investigate the reasons for the comparable performance of these two strands of methods for XMTC, and (ii) to document this observation explicitly, as the efficacy of linear classifiers in this regime, has been ignored in many relevant recent works.
AlkuperäiskieliEnglanti
OtsikkoESANN 2020 - Proceedings, 28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
Kustantajai6doc.com
Sivut223-228
Sivumäärä6
ISBN (elektroninen)9782875870742
TilaJulkaistu - 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEuropean Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning - Virtual, Bruges, Belgia
Kesto: 2 lokak. 20204 lokak. 2020
Konferenssinumero: 28

Conference

ConferenceEuropean Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
LyhennettäESANN
Maa/AlueBelgia
KaupunkiBruges
Ajanjakso02/10/202004/10/2020

Sormenjälki

Sukella tutkimusaiheisiin 'Why state-of-the-art deep learning barely works as good as a linear classifier in extreme multi-label text classification'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä