Abstrakti
For a compact Riemann surface of genus g with n punctures, consider the class of n-tuples of conformal mappings (φ1, . . . , φn) of the unit disk each taking 0 to a puncture. Assume further that (1) these maps are quasiconformally extendible to C, (2) the pre-Schwarzian of each φi is in the Bergman space, and (3) the images of the closures of the disk do not intersect. We show that the class of such non-overlapping mappings is a complex Hilbert manifold.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 1550060 |
Sivumäärä | 21 |
Julkaisu | Communications in Contemporary Mathematics |
Vuosikerta | 18 |
Numero | 04 |
DOI - pysyväislinkit | |
Tila | Julkaistu - elok. 2016 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |