Abstrakti
In this paper the problem of recognizing radar waveforms is addressed for multipath fading channels. Waveform classification is needed in spectrum sharing, radar-communications coexistence, cognitive radars, spectrum monitoring and signal intelligence. Different radar waveforms exhibit different properties in time-frequency domain. We propose a deep learning method for waveform classification. The received signal is first equalized to mitigate the effect of multipath fading channels by using a denoising auto-encoder (DAE). Then, the equalized signal is processed with Fourier synchrosqueezing transform that has excellent properties in revealing time-varying behavior, rate of, strength and number of oscillatory components in signals. The resulting time-frequency description is represented as a bivariate image that is fed into a convolutional neural network. The proposed method has superior performance over the widely used the Choi-Williams distribution (CWD) method in distinguishing among different radar waveforms even at low signal-to-noise ratio regime.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2020 IEEE International Radar Conference, RADAR 2020 |
Kustantaja | IEEE |
Sivut | 612-617 |
Sivumäärä | 6 |
ISBN (elektroninen) | 9781728168128 |
DOI - pysyväislinkit | |
Tila | Julkaistu - huhtik. 2020 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | IEEE Radar Conference - Washington, Yhdysvallat Kesto: 28 huhtik. 2020 → 30 huhtik. 2020 |
Conference
Conference | IEEE Radar Conference |
---|---|
Lyhennettä | RADAR |
Maa/Alue | Yhdysvallat |
Kaupunki | Washington |
Ajanjakso | 28/04/2020 → 30/04/2020 |