Waveform Recognition in Multipath Fading Using Autoencoder and CNN with Fourier Synchrosqueezing Transform

Gyuyeol Kong, Minchae Jung, Visa Koivunen

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

6 Sitaatiot (Scopus)
151 Lataukset (Pure)

Abstrakti

In this paper the problem of recognizing radar waveforms is addressed for multipath fading channels. Waveform classification is needed in spectrum sharing, radar-communications coexistence, cognitive radars, spectrum monitoring and signal intelligence. Different radar waveforms exhibit different properties in time-frequency domain. We propose a deep learning method for waveform classification. The received signal is first equalized to mitigate the effect of multipath fading channels by using a denoising auto-encoder (DAE). Then, the equalized signal is processed with Fourier synchrosqueezing transform that has excellent properties in revealing time-varying behavior, rate of, strength and number of oscillatory components in signals. The resulting time-frequency description is represented as a bivariate image that is fed into a convolutional neural network. The proposed method has superior performance over the widely used the Choi-Williams distribution (CWD) method in distinguishing among different radar waveforms even at low signal-to-noise ratio regime.
AlkuperäiskieliEnglanti
Otsikko2020 IEEE International Radar Conference, RADAR 2020
KustantajaIEEE
Sivut612-617
Sivumäärä6
ISBN (elektroninen)9781728168128
DOI - pysyväislinkit
TilaJulkaistu - huhtik. 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE Radar Conference - Washington, Yhdysvallat
Kesto: 28 huhtik. 202030 huhtik. 2020

Conference

ConferenceIEEE Radar Conference
LyhennettäRADAR
Maa/AlueYhdysvallat
KaupunkiWashington
Ajanjakso28/04/202030/04/2020

Sormenjälki

Sukella tutkimusaiheisiin 'Waveform Recognition in Multipath Fading Using Autoencoder and CNN with Fourier Synchrosqueezing Transform'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä