Waveform Classification in Radar-Communications Coexistence Scenarios

Gyuyeol Kong, Minchae Jung, Visa Koivunen

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

10 Sitaatiot (Scopus)
268 Lataukset (Pure)

Abstrakti

In this paper the problem of recognizing waveform and modulation is addressed in radar-communications coexistence and shared spectrum scenarios. We propose a deep learning method for waveform classification. A hierarchical recognition approach is employed. The received complex-valued signal is first classified to single carrier radar, communication or multicarrier waveforms. Fourier synchrosqueezing transformation (FSST) time-frequency representation is computed and used as an input to a convolutional neural network (CNN). For multicarrier signals, key waveform parameters including the cyclic prefix (CP) duration, number of subcarriers and subcarrier spacing are estimated. The modulation type used for subcarriers is recognized. Independent component analysis (ICA) is used to enforce independence of I- and Q-components, and consequently significantly improving the classification performance. Simulation results demonstrate the high classification performance of the proposed method even for orthogonal frequency division multiplexing (OFDM) signals with high-order quadrature amplitude modulation (QAM).

AlkuperäiskieliEnglanti
Otsikko2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings
KustantajaIEEE
Sivumäärä6
ISBN (elektroninen)9781728182988
DOI - pysyväislinkit
TilaJulkaistu - 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE Global Communications Conference - Taipei, Taiwan
Kesto: 7 jouluk. 202011 jouluk. 2020

Julkaisusarja

NimiIEEE Global Communications Conference
ISSN (painettu)2334-0983
ISSN (elektroninen)2576-6813

Conference

ConferenceIEEE Global Communications Conference
LyhennettäGLOBECOM
Maa/AlueTaiwan
KaupunkiTaipei
Ajanjakso07/12/202011/12/2020

Sormenjälki

Sukella tutkimusaiheisiin 'Waveform Classification in Radar-Communications Coexistence Scenarios'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä