Volume of metric balls in high-dimensional complex Grassmann manifolds

Renaud Alexandre Pitaval*, Lu Wei, Olav Tirkkonen, Jukka Corander

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliConference articleScientificvertaisarvioitu

2 Sitaatiot (Scopus)

Abstrakti

Volume of metric balls relates to rate-distortion theory and packing bounds on codes. In this paper, the volume of balls in complex Grassmann manifolds is evaluated for an arbitrary radius. The ball is defined as a set of hyperplanes of a fixed dimension with reference to a center of possibly different dimensions, and a generalized chordal distance for unequal dimensional subspaces is used. First, the volume is reduced to a 1-D integral representation. The overall problem boils down to evaluating a determinant of a matrix of the same size as the subspace dimensionality. Interpreting this determinant as a characteristic function of the Jacobi ensemble, an asymptotic analysis is carried out. The obtained asymptotic volume is moreover refined using moment-matching techniques to provide a tighter approximation in finite-size regimes. Finally, the pertinence of the derived results is shown by rate-distortion analysis of source coding on Grassmann manifolds.

AlkuperäiskieliEnglanti
Sivut5105-5116
Sivumäärä12
JulkaisuIEEE Transactions on Information Theory
Vuosikerta62
Numero9
DOI - pysyväislinkit
TilaJulkaistu - 1 syyskuuta 2016
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE Information Theory Workshop - Jeju Island, Etelä-Korea
Kesto: 11 lokakuuta 201515 lokakuuta 2015

Sormenjälki Sukella tutkimusaiheisiin 'Volume of metric balls in high-dimensional complex Grassmann manifolds'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä