Visual Interpretation of DNN-based Acoustic Models using Deep Autoencoders

Tamás Grósz*, Mikko Kurimo

*Tämän työn vastaava kirjoittaja

    Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

    1 Sitaatiot (Scopus)
    67 Lataukset (Pure)

    Abstrakti

    In the past few years, Deep Neural Networks (DNN) have become the state-of-the-art solution in several areas, including automatic speech recognition (ASR), unfortunately, they are generally viewed as black boxes. Recently, this started to change as researchers have dedicated much effort into interpreting their behavior. In this work, we concentrate on visual interpretation by depicting the hidden activation vectors of the DNN, and propose the usage of deep Autoencoders (DAE) to transform these hidden representations for inspection. We use multiple metrics to compare our approach with other, widely-used algorithms and the results show that our approach is quite competitive. The main advantage of using Autoencoders over the existing ones is that after the training phase, it applies a fixed transformation that can be used to visualize any hidden activation vector without any further optimization, which is not true for the other methods.
    AlkuperäiskieliEnglanti
    OtsikkoMachine Learning Methods in Visualisation for Big Data
    AlaotsikkoEurographics proceedings
    ToimittajatDaniel Archambault, Ian Nabney, Jaakko Peltonen
    KustantajaEurographics Association
    Sivut25-29
    ISBN (elektroninen)978-3-03868-113-7
    DOI - pysyväislinkit
    TilaJulkaistu - 2020
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    TapahtumaInternational Workshop on Machine Learning in Visualisation for Big Data - Norrköping, Ruotsi
    Kesto: 25 toukok. 202025 toukok. 2020

    Workshop

    WorkshopInternational Workshop on Machine Learning in Visualisation for Big Data
    LyhennettäMLVis
    Maa/AlueRuotsi
    KaupunkiNorrköping
    Ajanjakso25/05/202025/05/2020

    Sormenjälki

    Sukella tutkimusaiheisiin 'Visual Interpretation of DNN-based Acoustic Models using Deep Autoencoders'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä