Vehicle Trajectory Reconstruction from not working Sparse Data Using a Hybrid Approach

Jingfeng Ma, Claudio Roncoli, Gang Ren*, Yuanxiang Yang, Qi Cao, Yue Deng, Jingzhi Li

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

Vehicle trajectories deliver precious information, supporting traffic state estimation and congested traffic mitigation. However, collecting fully sampled vehicle trajectories is difficult due to unaffordable data-collection costs and maintenance costs of data collection equipment. This study aims to accurately reconstruct missing vehicle trajectories by proposing a novel approach based on sparse data collected from different types of urban roads. First, an improved map-matching algorithm combining a hidden Markov model (HMM) and a bidirectional Dijkstra algorithm is proposed to ensure the high quality of the input data for trajectory reconstruction. The matched trajectory points are then converted into a two-dimensional time-space map. Subsequently, a piecewise cubic Hermite interpolating polynomial (PCHIP) algorithm is developed to reconstruct vehicle trajectories based on a total of 371 taxi trajectories on three types of urban roads. The results demonstrate that the speed-based mean relative error (MRE) value is less than 9%, and the speed-based root mean square error (RMSE_v) value is less than 6 km=h. Furthermore, the location-based MAE is found to be less than 5.86 m, and the location-based RMSE_x value is less than 7 m. Additionally, a model comparison is conducted, and the outcomes evidence that the combined method performs better than state-of-the-art approaches.

AlkuperäiskieliEnglanti
Artikkeli04024108
Sivumäärä12
JulkaisuJournal of Transportation Engineering Part A: Systems
Vuosikerta151
Numero2
DOI - pysyväislinkit
TilaJulkaistu - 1 helmik. 2025
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Vehicle Trajectory Reconstruction from not working Sparse Data Using a Hybrid Approach'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä