1 Sitaatiot (Scopus)
60 Lataukset (Pure)

Abstrakti

Recent machine learning advances have proposed black-box estimation of unknown continuous-time system dynamics directly from data. However, earlier works are based on approximative solutions or point estimates. We propose a novel Bayesian nonparametric model that uses Gaussian processes to infer posteriors of unknown ODE systems directly from data. We derive sparse variational inference with decoupled functional sampling to represent vector field posteriors. We also introduce a probabilistic shooting augmentation to enable efficient inference from arbitrarily long trajectories.The method demonstrates the benefit of computing vector field posteriors, with predictive uncertainty scores outperforming alternative methods on multiple ODE learning tasks.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022), PMLR
KustantajaJMLR
Sivut790-799
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on Uncertainty in Artificial Intelligence - Eindhoven, Alankomaat
Kesto: 1 elok. 20225 elok. 2022
Konferenssinumero: 38
https://www.auai.org/uai2022/

Julkaisusarja

NimiProceedings of Machine Learning Research
KustantajaPMLR
Vuosikerta180
ISSN (painettu)2640-3498

Conference

ConferenceConference on Uncertainty in Artificial Intelligence
LyhennettäUAI
Maa/AlueAlankomaat
KaupunkiEindhoven
Ajanjakso01/08/202205/08/2022
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Variational multiple shooting for Bayesian ODEs with Gaussian processes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä