Variational Gaussian Process Diffusion Processes

Prakhar Verma, Vincent Adam, Arno Solin

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Diffusion processes are a class of stochastic differential equations (SDEs) providing a rich family of expressive models that arise naturally in dynamic modelling tasks. Probabilistic inference and learning under generative models with latent processes endowed with a non-linear diffusion process prior are intractable problems. We build upon work within variational inference, approximating the posterior process as a linear diffusion process, and point out pathologies in the approach. We propose an alternative parameterization of the Gaussian variational process using a site-based exponential family description. This allows us to trade a slow inference algorithm with fixed-point iterations for a fast algorithm for convex optimization akin to natural gradient descent, which also provides a better objective for learning model parameters.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 27th International Conference on Artificial Intelligence and Statistics
KustantajaJMLR
Sivut1909-1917
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Artificial Intelligence and Statistics - Valencia, Espanja
Kesto: 2 toukok. 20244 toukok. 2024
http://aistats.org/aistats2024/

Julkaisusarja

NimiProceedings of Machine Learning Research
KustantajaPMLR
Vuosikerta238
ISSN (elektroninen)2640-3498

Conference

ConferenceInternational Conference on Artificial Intelligence and Statistics
LyhennettäAISTATS
Maa/AlueEspanja
KaupunkiValencia
Ajanjakso02/05/202404/05/2024
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Variational Gaussian Process Diffusion Processes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä