Projekteja vuodessa
Abstrakti
Diffusion processes are a class of stochastic differential equations (SDEs) providing a rich family of expressive models that arise naturally in dynamic modelling tasks. Probabilistic inference and learning under generative models with latent processes endowed with a non-linear diffusion process prior are intractable problems. We build upon work within variational inference, approximating the posterior process as a linear diffusion process, and point out pathologies in the approach. We propose an alternative parameterization of the Gaussian variational process using a site-based exponential family description. This allows us to trade a slow inference algorithm with fixed-point iterations for a fast algorithm for convex optimization akin to natural gradient descent, which also provides a better objective for learning model parameters.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 27th International Conference on Artificial Intelligence and Statistics |
Kustantaja | JMLR |
Sivut | 1909-1917 |
Tila | Julkaistu - 2024 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Artificial Intelligence and Statistics - Valencia, Espanja Kesto: 2 toukok. 2024 → 4 toukok. 2024 http://aistats.org/aistats2024/ |
Julkaisusarja
Nimi | Proceedings of Machine Learning Research |
---|---|
Kustantaja | PMLR |
Vuosikerta | 238 |
ISSN (elektroninen) | 2640-3498 |
Conference
Conference | International Conference on Artificial Intelligence and Statistics |
---|---|
Lyhennettä | AISTATS |
Maa/Alue | Espanja |
Kaupunki | Valencia |
Ajanjakso | 02/05/2024 → 04/05/2024 |
www-osoite |
Sormenjälki
Sukella tutkimusaiheisiin 'Variational Gaussian Process Diffusion Processes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Aktiivinen
-
Solin Arno /AoF Fellow Salary: Probabilistic principles for latent space exploration in deep learning
01/09/2021 → 31/08/2026
Projekti: Academy of Finland: Other research funding