Projekteja vuodessa
Abstrakti
This work brings together two powerful concepts in Gaussian processes: the variational approach to sparse approximation and the spectral representation of Gaussian processes. This gives rise to an approximation that inherits the benefits of the variational approach but with the representational power and computational scalability of spectral representations. The work hinges on a key result that there exist spectral features related to a finite domain of the Gaussian process which exhibit almost-independent covariances. We derive these expressions for Matern kernels in one dimension, and generalize to more dimensions using kernels with specific structures. Under the assumption of additive Gaussian noise, our method requires only a single pass through the data set, making for very fast and accurate computation. We fit a model to 4 million training points in just a few minutes on a standard laptop. With non-conjugate likelihoods, our MCMC scheme reduces the cost of computation from O(NM2) (for a sparse Gaussian process) to O(NM) per iteration, where N is the number of data and M is the number of features.
| Alkuperäiskieli | Englanti |
|---|---|
| Artikkeli | 151 |
| Sivut | 1-52 |
| Sivumäärä | 52 |
| Julkaisu | Journal of Machine Learning Research |
| Vuosikerta | 18 |
| Numero | 1 |
| Tila | Julkaistu - 2018 |
| OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Rahoitus
Part of this research was conducted during the invitation of J. Hensman at Mines Saint-Etienne. This visit was funded by the Chair in Applied Mathematics OQUAIDO, which gather partners in technological research (BRGM, CEA, IFPEN, IRSN, Safran, Storengy) and academia (Ecole Centrale de Lyon, Mines Saint-Etienne, University of Grenoble, University of Nice, University of Toulouse) on the topic of advanced methods for computer experiments. J. Hensman gratefully acknowledges a fellowship from the Medical Research Council UK. A. Solin acknowledges the Academy of Finland grant 308640. We acknowledge the computational resources provided by the Aalto Science-IT project. J. Hensman would like to thank T. Smith for insightful discussions. The authors would like to thank T. Bui, A. Vehtari, S.T. John and the anonymous reviewers who helped to improve this manuscript.
Sormenjälki
Sukella tutkimusaiheisiin 'Variational Fourier Features for Gaussian Processes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
Vaiheittaisia menetelmiä reaaliaikaiseen probabilistiseen mallinnukseen
Solin, A. (Vastuullinen johtaja)
01/09/2017 → 31/08/2020
Projekti: Academy of Finland: Other research funding