Variational Density Functional Calculations of Excited States: Conical Intersection and Avoided Crossing in Ethylene Bond Twisting

Yorick L.A. Schmerwitz, Aleksei V. Ivanov, Elvar Jónsson, Hannes Jónsson, Gianluca Levi*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

11 Sitaatiot (Scopus)
52 Lataukset (Pure)

Abstrakti

Theoretical studies of photochemical processes require a description of the energy surfaces of excited electronic states, especially near degeneracies, where transitions between states are most likely. Systems relevant to photochemical applications are typically too large for high-level multireference methods, and while time-dependent density functional theory (TDDFT) is efficient, it can fail to provide the required accuracy. A variational, time-independent density functional approach is applied to the twisting of the double bond and pyramidal distortion in ethylene, the quintessential model for photochemical studies. By allowing for symmetry breaking, the calculated energy surfaces exhibit the correct topology around the twisted-pyramidalized conical intersection even when using a semilocal functional approximation, and by including explicit self-interaction correction, the torsional energy curves are in close agreement with published multireference results. The findings of the present work point to the possibility of using a single determinant time-independent density functional approach to simulate nonadiabatic dynamics, even for large systems where multireference methods are impractical and TDDFT is often not accurate enough.

AlkuperäiskieliEnglanti
Sivut3990-3999
Sivumäärä10
JulkaisuJournal of Physical Chemistry Letters
Vuosikerta13
Numero18
DOI - pysyväislinkit
TilaJulkaistu - 12 toukok. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Variational Density Functional Calculations of Excited States: Conical Intersection and Avoided Crossing in Ethylene Bond Twisting'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä