Variable Splitting Methods for Constrained State Estimation in Partially Observed Markov Processes

Rui Gao*, Filip Tronarp, Simo Särkkä

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

2 Sitaatiot (Scopus)

Abstrakti

In this letter, we propose a class of efficient, accurate, and general methods for solving state-estimation problems with equality and inequality constraints. The methods are based on recent developments in variable splitting and partially observed Markov processes. We first present the generalized framework based on variable splitting, then develop efficient methods to solve the state-estimation subproblems arising in the framework. The solutions to these subproblems can be made efficient by leveraging the Markovian structure of the model as is classically done in so-called Bayesian filtering and smoothing methods. The numerical experiments demonstrate that our methods outperform conventional optimization methods in computation cost as well as the estimation performance.

AlkuperäiskieliEnglanti
Artikkeli9143395
Sivut1305-1309
Sivumäärä5
JulkaisuIEEE Signal Processing Letters
Vuosikerta27
DOI - pysyväislinkit
TilaJulkaistu - 2020
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Variable Splitting Methods for Constrained State Estimation in Partially Observed Markov Processes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä