## Abstrakti

A continuous flow apparatus was applied to measure the phase equilibrium at 523 K and 573 K. The performance of the apparatus was analysed with the determination of vapor pressures of water at the temperatures (T = 453 K and 473 K). The measured water vapor pressures deviated from the literature values less than 1 %. Vapor pressures of n-dodecane, n-hexadecane and phenol were measured at the temperatures (T = 523–623 K) and, the bubble point pressures of n-dodecane + phenol and n-hexadecane + phenol were measured at the temperatures (T = 523 K and 573 K). The measured vapor pressures of the pure components were compared with the literature values. Relative vapor pressure deviated from the literature value less than 2 % for all the measured vapor pressures. The measured vapor pressures value in this work agreed well with the literature, which indicates that the measurement apparatus and the method can produce good-quality data. The measured bubble point pressures for the n-dodecane + phenol and n-hexadecane + phenol systems were modeled with Peng-Robinson and Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) equations of state and Non-random Two-liquid (NRTL) activity coefficient model. The measured systems were at first modeled with Peng-Robinson and Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) equations of state without binary interaction parameters. Additionally, the parameters were regressed to optimize the performance of the models. The NRTL activity coefficient model described the behaviour of the measured and the literature data better than the equations of state. Furthermore, the Peng-Robinson equation of state resulted in better predictions than PC-SAFT equation of state even without binary interaction parameters regression. Both equations of state modeled the phase equilibrium behaviour of the system well. The n-dodecane + phenol system showed azeotropic behaviour.

Alkuperäiskieli | Englanti |
---|---|

Artikkeli | 112991 |

Sivumäärä | 13 |

Julkaisu | Fluid Phase Equilibria |

Vuosikerta | 537 |

DOI - pysyväislinkit | |

Tila | Julkaistu - 1 kesäkuuta 2021 |

OKM-julkaisutyyppi | A1 Julkaistu artikkeli, soviteltu |