UTILISING SIMULATED TREE DATA TO TRAIN SUPERVISED CLASSIFIERS

P. Rönnholm*, S. Wittke, M. Ingman, P. Putkiranta, H. Kauhanen, H. Kaartinen, M. T. Vaaja

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliConference articleScientificvertaisarvioitu

75 Lataukset (Pure)

Abstrakti

The aim of our research was to examine whether simulated forest data can be utilized for training supervised classifiers. We included two classifiers namely the random forest classifier and the novel convolutional neural network classifier that utilizes feature images. We simulated tree parameters and created a feature vector for each tree. The original feature vector was utilised with random forest classifier. However, these feature vectors were also converted into feature images suitable for input into a YOLO (You Only Look Once) convolutional neural network classifier. The selected features were red colour, green colour, near-infrared colour, tree height divided by canopy diameter, and NDVI. The random forest classifier and convolutional neural network classifier performed similarly both with simulated data and field-measured reference data. As a result, both methods were able to identify correctly 97.5 % of the field-measured reference trees. Simulated data allows much larger training data than what could be feasible from field measurements.

AlkuperäiskieliEnglanti
Sivut633-639
Sivumäärä7
JulkaisuInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
Vuosikerta43
NumeroB2-2022
DOI - pysyväislinkit
TilaJulkaistu - 30 toukok. 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaISPRS Congress “Imaging today, foreseeing tomorrow” - Nice, Ranska
Kesto: 6 kesäk. 202211 kesäk. 2022
Konferenssinumero: 24

Sormenjälki

Sukella tutkimusaiheisiin 'UTILISING SIMULATED TREE DATA TO TRAIN SUPERVISED CLASSIFIERS'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä