Using text and acoustic features in predicting glottal excitation waveforms for parametric speech synthesis with recurrent neural networks

Lauri Juvela, Xin Wang, Shinji Takaki, Manu Airaksinen, Junichi Yamagishi, Paavo Alku

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

6 Sitaatiot (Scopus)

Abstrakti

This work studies the use of deep learning methods to directly model glottal excitation waveforms from context dependent text features in a text-to-speech synthesis system. Glottal vocoding is integrated into a deep neural network-based text-to-speech framework where text and acoustic features can be flexibly used as both network inputs or outputs. Long short-term memory recurrent neural networks are utilised in two stages: first, in mapping text features to acoustic features and second, in predicting glottal waveforms from the text and/or acoustic features. Results show that using the text features directly yields similar quality to the prediction of the excitation from acoustic features, both outperforming a baseline system based on using a fixed glottal pulse for excitation generation.

AlkuperäiskieliEnglanti
OtsikkoProceedings of the Annual Conference of the International Speech Communication Association
AlaotsikkoInterspeech'16, San Francisco, USA, Sept. 8-12, 2016
KustantajaInternational Speech Communication Association (ISCA)
Sivut2283-2287
Sivumäärä5
Vuosikerta08-12-September-2016
ISBN (elektroninen)978-1-5108-3313-5
DOI - pysyväislinkit
TilaJulkaistu - 2016
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInterspeech - San Francisco, Yhdysvallat
Kesto: 8 syysk. 201612 syysk. 2016
Konferenssinumero: 17

Julkaisusarja

NimiProceedings of the Annual Conference of the International Speech Communication Association
KustantajaInternational Speech Communications Association
ISSN (painettu)1990-9770
ISSN (elektroninen)2308-457X

Conference

ConferenceInterspeech
Maa/AlueYhdysvallat
KaupunkiSan Francisco
Ajanjakso08/09/201612/09/2016

Sormenjälki

Sukella tutkimusaiheisiin 'Using text and acoustic features in predicting glottal excitation waveforms for parametric speech synthesis with recurrent neural networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä