Using statistical models of morphology in the search for optimal units of representation in the human mental lexicon

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

Organisaatiot

  • University of Helsinki

Kuvaus

Determining optimal units of representing morphologically complex words in the mental lexicon is a central question in psycholinguistics. Here, we utilize advances in computational sciences to study human morphological processing using statistical models of morphology, particularly the unsupervised Morfessor model that works on the principle of optimization. The aim was to see what kind of model structure corresponds best to human word recognition costs for multimorphemic Finnish nouns: a model incorporating units resembling linguistically defined morphemes, a whole-word model, or a model that seeks for an optimal balance between these two extremes. Our results showed that human word recognition was predicted best by a combination of two models: a model that decomposes words at some morpheme boundaries while keeping others unsegmented and a whole-word model. The results support dual-route models that assume that both decomposed and full-form representations are utilized to optimally process complex words within the mental lexicon.

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut939-973
Sivumäärä35
JulkaisuCOGNITIVE SCIENCE
Vuosikerta42
Varhainen verkossa julkaisun päivämäärä2017
TilaJulkaistu - 2018
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Lataa tilasto

Ei tietoja saatavilla

ID: 16833408