Using machine learning for decreasing state uncertainty in planning

Senka Krivic, Michael Cashmore, Daniele Magazzeni, Sandor Szedmak, Justus Piater

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

2 Sitaatiot (Scopus)
69 Lataukset (Pure)

Abstrakti

We present a novel approach for decreasing state uncertainty in planning prior to solving the planning problem. This is done by making predictions about the state based on currently known information, using machine learning techniques. For domains where uncertainty is high, we define an active learning process for identifying which information, once sensed, will best improve the accuracy of predictions. We demonstrate that an agent is able to solve problems with uncertainties in the state with less planning effort compared to standard planning techniques. Moreover, agents can solve problems for which they could not find valid plans without using predictions. Experimental results also demonstrate that using our active learning process for identifying information to be sensed leads to gathering information that improves the prediction process.

AlkuperäiskieliEnglanti
Sivut765-806
Sivumäärä42
JulkaisuJournal of Artificial Intelligence Research
Vuosikerta69
DOI - pysyväislinkit
TilaJulkaistu - 11 marrask. 2020
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Using machine learning for decreasing state uncertainty in planning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä