Using Large Language Models to Enhance Programming Error Messages

Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather, Brett A. Becker

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

58 Sitaatiot (Scopus)
117 Lataukset (Pure)

Abstrakti

A key part of learning to program is learning to understand programming error messages. They can be hard to interpret and identifying the cause of errors can be time-consuming. One factor in this challenge is that the messages are typically intended for an audience that already knows how to program, or even for programming environments that then use the information to highlight areas in code. Researchers have been working on making these errors more novice friendly since the 1960s, however progress has been slow. The present work contributes to this stream of research by using large language models to enhance programming error messages with explanations of the errors and suggestions on how to fix them. Large language models can be used to create useful and novice-friendly enhancements to programming error messages that sometimes surpass the original programming error messages in interpretability and actionability. These results provide further evidence of the benefits of large language models for computing educators, highlighting their use in areas known to be challenging for students. We further discuss the benefits and downsides of large language models and highlight future streams of research for enhancing programming error messages.

AlkuperäiskieliEnglanti
OtsikkoSIGCSE 2023 - Proceedings of the 54th ACM Technical Symposium on Computer Science Education
KustantajaACM
Sivut563–569
Sivumäärä7
ISBN (painettu)978-1-4503-9431-4
DOI - pysyväislinkit
TilaJulkaistu - 2 maalisk. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaACM Technical Symposium on Computer Science Education - Toronto, Kanada
Kesto: 15 maalisk. 202318 maalisk. 2023
Konferenssinumero: 54

Conference

ConferenceACM Technical Symposium on Computer Science Education
LyhennettäSIGCSE
Maa/AlueKanada
KaupunkiToronto
Ajanjakso15/03/202318/03/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Using Large Language Models to Enhance Programming Error Messages'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä