Use of Gaussian Processes in System Identification

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaEntry for encyclopedia / dictionaryProfessional

Abstrakti

Gaussian processes are used in machine learning to learn input-output mappings from observed data. Gaussian process regression is based on imposing a Gaussian process prior on the unknown regressor function and statistically conditioning it on the observed data. In system identification, Gaussian processes are used to form time series prediction models such as nonlinear finite-impulse response (NFIR) models as well as nonlinear autoregressive (NARX) models. Gaussian process state-space (GPSS) models can be used to learn the dynamic and measurement models for a state-space representation of the input-output data. Temporal and spatiotemporal Gaussian processes can be directly used to form regressor on the data in the time domain. The aim of this article is to briefly outline the main directions in system identification methods using Gaussian processes.
AlkuperäiskieliEnglanti
OtsikkoEncyclopedia of Systems and Control
ToimittajatJohn Baillieul, Tariq Samad
KustantajaSpringer
Sivut2393-2402
Sivumäärä10
Painos2nd
ISBN (painettu)978-3-030-44183-8
DOI - pysyväislinkit
TilaJulkaistu - 2021
OKM-julkaisutyyppiD2 Artikkeli ammatillisessa kokoomateoksessa

Sormenjälki

Sukella tutkimusaiheisiin 'Use of Gaussian Processes in System Identification'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä