Abstrakti
In this paper, we develop a novel method for approximate continuous-discrete Bayesian filtering. The projection filtering framework is exploited to develop accurate approximations of posterior distributions within parametric classes of probability distributions. This is done by formulating an ordinary differential equation for the posterior distribution that has the prior as initial value and hits the exact posterior after a unit of time. Particular emphasis is put on exponential families, especially the Gaussian family of densities. Experimental results demonstrate the efficacy and flexibility of the method.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019; Brighton; United Kingdom; 12-17 May 2019 : Proceedings |
Kustantaja | IEEE |
Sivut | 5032-5036 |
Sivumäärä | 5 |
ISBN (elektroninen) | 9781479981311 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 toukok. 2019 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Conference on Acoustics, Speech, and Signal Processing - Brighton, Iso-Britannia Kesto: 12 toukok. 2019 → 17 toukok. 2019 Konferenssinumero: 44 |
Julkaisusarja
Nimi | Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing |
---|---|
Vuosikerta | 2019-May |
ISSN (painettu) | 1520-6149 |
ISSN (elektroninen) | 2379-190X |
Conference
Conference | IEEE International Conference on Acoustics, Speech, and Signal Processing |
---|---|
Lyhennettä | ICASSP |
Maa/Alue | Iso-Britannia |
Kaupunki | Brighton |
Ajanjakso | 12/05/2019 → 17/05/2019 |