Abstrakti
The outputs of a trained neural network contain much richer information than just a one-hot classifier. For example, a neural network might give an image of a dog the probability of one in a million of being a cat but it is still much larger than the probability of being a car. To reveal the hidden structure in them, we apply two unsupervised learning algorithms, PCA and ICA, to the outputs of a deep Convolutional Neural Network trained on the ImageNet of 1000 classes. The PCA/ICA embedding of the object classes reveals their visual similarity and the PCA/ICA components can be interpreted as common visual features shared by similar object classes. For an application, we proposed a new zero-shot learning method, in which the visual features learned by PCA/ICA are employed. Our zeroshot learning method achieves the state-of-the-art results on the ImageNet of over 20000 classes.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence |
Alaotsikko | New York, New York, USA, 9–15 July 2016 |
Toimittajat | Subbarao Kambhampati |
Kustantaja | AAAI Press |
Sivut | 3432-3428 |
ISBN (elektroninen) | 978-1-57735-770-4 |
Tila | Julkaistu - 9 heinäk. 2016 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Joint Conference on Artificial Intelligence - New York Hilton Midtown, New York, Yhdysvallat Kesto: 9 heinäk. 2016 → 15 heinäk. 2016 Konferenssinumero: 25 http://ijcai-16.org/index.php/welcome/view/home |
Julkaisusarja
Nimi | International Joint Conferences on Artificial Intelligence |
---|---|
Kustantaja | IAAA press |
ISSN (elektroninen) | 1045-0823 |
Conference
Conference | International Joint Conference on Artificial Intelligence |
---|---|
Lyhennettä | IJCAI |
Maa/Alue | Yhdysvallat |
Kaupunki | New York |
Ajanjakso | 09/07/2016 → 15/07/2016 |
www-osoite |