Unsupervised Learning in RSS-Based DFLT Using an EM Algorithm

Ossi Kaltiokallio*, Roland Hostettler, Hüseyin Yiğitler, Mikko Valkama

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)
6 Lataukset (Pure)

Abstrakti

Received signal strength (RSS) changes of static wireless nodes can be used for device-free localization and tracking (DFLT). Most RSS-based DFLT systems require access to calibration data, either RSS measurements from a time period when the area was not occupied by people, or measurements while a person stands in known locations. Such calibration periods can be very expensive in terms of time and effort, making system deployment and maintenance challenging. This paper develops an Expectation-Maximization (EM) algorithm based on Gaussian smoothing for estimating the unknown RSS model parameters, liberating the system from supervised training and calibration periods. To fully use the EM algorithm's potential, a novel localization-and-tracking system is presented to estimate a target's arbitrary trajectory. To demonstrate the effectiveness of the proposed approach, it is shown that: (i) the system requires no calibration period; (ii) the EM algorithm improves the accuracy of existing DFLT methods; (iii) it is computationally very efficient; and (iv) the system outperforms a state-of-the-art adaptive DFLT system in terms of tracking accuracy.

AlkuperäiskieliEnglanti
Artikkeli5549
Sivumäärä24
JulkaisuSensors (Basel, Switzerland)
Vuosikerta21
Numero16
DOI - pysyväislinkit
TilaJulkaistu - 18 elokuuta 2021
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Unsupervised Learning in RSS-Based DFLT Using an EM Algorithm'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä