Unpacking dasymetric modelling to correct spatial bias in environmental model outputs

Marko Kallio*, Joseph Guillaume, Peter Burek, Sylvia Tramberend, Mikhail Smilovic, Alexander Horton, Kirsi-Kanerva Virrantaus

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)
54 Lataukset (Pure)

Abstrakti

Complex environmental model outputs used to inform decisions often have systematic errors and are of inappropriate resolution, requiring downscaling and bias correction for local applications. Here we provide a new interpretation of dasymetric modelling (DM) as a spatial bias correction framework useful in environmental modelling. DM is based on areal interpolation where estimates of some variable at target zones are obtained from overlapping source zones using ancillary information. We explore DM by downscaling runoff output from a distributed hydrological model using two meta-models and describe the properties of the methodology in detail. Consistent with properties of linear scaling bias correction, results show that the methodology 1) reduces errors compared to the source data and meta-models, 2) improve the spatial structure of the estimates, and 3) improve the performance of the downscaled estimates, particularly where meta-models perform poorly. The framework is simple and useful in ensuring spatial coherence of downscaled products.
AlkuperäiskieliEnglanti
Artikkeli105511
Sivumäärä12
JulkaisuEnvironmental Modelling & Software
Vuosikerta157
DOI - pysyväislinkit
TilaJulkaistu - marrask. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Unpacking dasymetric modelling to correct spatial bias in environmental model outputs'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä