Unifying Probabilistic Models for Time-frequency Analysis

William J. Wilkinson*, Michael Riis Andersen, Joshua D. Reiss, Dan Stowell, Arno Solin

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

1 Sitaatiot (Scopus)
159 Lataukset (Pure)

Abstrakti

In audio signal processing, probabilistic time-frequency models have many benefits over their non-probabilistic counterparts. They adapt to the incoming signal, quantify uncertainty, and measure correlation between the signal's amplitude and phase information, making time domain resynthesis straightforward. However, these models are still not widely used since they come at a high computational cost, and because they are formulated in such a way that it can be difficult to interpret all the modelling assumptions. By showing their equivalence to Spectral Mixture Gaussian processes, we illuminate the underlying model assumptions and provide a general framework for constructing more complex models that better approximate real-world signals. Our interpretation makes it intuitive to inspect, compare, and alter the models since all prior knowledge is encoded in the Gaussian process kernel functions. We utilise a state space representation to perform efficient inference via Kalman smoothing, and we demonstrate how our interpretation allows for efficient parameter learning in the frequency domain.

AlkuperäiskieliEnglanti
Otsikko44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019; Brighton; United Kingdom; 12-17 May 2019 : Proceedings
KustantajaIEEE
Sivut3352-3356
Sivumäärä5
ISBN (elektroninen)9781479981311
DOI - pysyväislinkit
TilaJulkaistu - 1 toukokuuta 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE International Conference on Acoustics, Speech, and Signal Processing - Brighton, Iso-Britannia
Kesto: 12 toukokuuta 201917 toukokuuta 2019
Konferenssinumero: 44

Julkaisusarja

NimiIEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
KustantajaIEEE
ISSN (painettu)1520-6149

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
LyhennettäICASSP
MaaIso-Britannia
KaupunkiBrighton
Ajanjakso12/05/201917/05/2019

Sormenjälki Sukella tutkimusaiheisiin 'Unifying Probabilistic Models for Time-frequency Analysis'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä