Understanding X-ray Spectroscopy of Carbonaceous Materials by Combining Experiments, Density Functional Theory, and Machine Learning. Part II: Quantitative Fitting of Spectra

Anja Aarva*, Volker L. Deringer, Sami Sainio, Tomi Laurila, Miguel A. Caro

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

2 Sitaatiot (Scopus)
24 Lataukset (Pure)

Abstrakti

Carbon-based nanomaterials are a promising platform for diverse technologies, but their rational design requires a more detailed chemical control over their structure and properties than is currently available. A long-standing challenge for the field has been in the interpretation and use of experimental X-ray spectra, especially for the amorphous and disordered forms of carbon. Here, we outline a unified approach to simultaneously and quantitatively analyze experimental X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) spectra of carbonaceous materials. We employ unsupervised machine learning to identify the most representative chemical environments and deconvolute experimental data according to these spectral contributions. To fit experimental spectra we rely on ab initio references and use all the information available: to fit experimental XAS spectra, the whole XAS fingerprint (reference) spectra of certain sites are taken into account, rather than just peak positions, as is currently the standard procedure. We argue that, even for predominantly pure-carbon materials, carbon K-edge and oxygen K-edge spectra should not be interpreted separately, since the presence of even small amounts of functional groups at the surface manifests itself on the X-ray spectroscopic signatures of both elements in an interlinked manner. Finally, we introduce the idea of carrying out simultaneous fits of XAS and XPS spectra, to reduce the number of degrees of freedom and arbitrariness of the fits. This work opens up a new direction, tightly integrating experiment and simulation, for understanding and ultimately controlling the functionalization of carbon nanomaterials at the atomic level.

AlkuperäiskieliEnglanti
Sivut9256-9267
Sivumäärä12
JulkaisuChemistry of Materials
Vuosikerta31
Numero22
DOI - pysyväislinkit
TilaJulkaistu - 26 marraskuuta 2019
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'Understanding X-ray Spectroscopy of Carbonaceous Materials by Combining Experiments, Density Functional Theory, and Machine Learning. Part II: Quantitative Fitting of Spectra'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Projektit

    Luotettavaa laskennallista sähkökemiaa tiheysfunktionaaliteoriaa sekä eritasoisia

    Caro Bayo, M.

    01/09/201731/08/2020

    Projekti: Academy of Finland: Other research funding

    FIRE: Sähkökemiaa ensimmäisistä periaatteista käsin

    Isoaho, N., Palomäki, T., Johansson, L., Caro Bayo, M., Laurila, T., Aarva, A. & Leppänen, E.

    01/09/201531/08/2018

    Projekti: Academy of Finland: Other research funding

    Lehtileikkeet

    Tailor-made carbon helps pinpoint hereditary diseases and correct medication dosage

    Anja Aarva, Miguel A. Caro, Tiina Laurila & Tomi Laurila

    14/11/201918/11/2019

    4 kohdetta/ Medianäkyvyys

    Lehdistö/media: Esiintyminen mediassa

    Siteeraa tätä