Understanding X-ray Spectroscopy of Carbonaceous Materials by Combining Experiments, Density Functional Theory, and Machine Learning. Part I: Fingerprint Spectra

Anja Aarva*, Volker L. Deringer, Sami Sainio, Tomi Laurila, Miguel A. Caro

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

3 Sitaatiot (Scopus)
23 Lataukset (Pure)

Abstrakti

Carbonaceous materials, especially tetrahedral amorphous carbon (ta-C), can form complex functionalized surface structures and are thus promising candidates for applications in biomedical devices and electrochemistry. Functional groups at ta-C surfaces have been widely studied by spectroscopic techniques; however, interpretation of the experimental data is extremely difficult, especially in the case of X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The assignments of experimental XPS and XAS signals are normally based on references obtained from molecular or crystalline samples, which are simplified approximations for the far more complex amorphous structures. Here, we use extensive density functional theory (DFT) simulations to predict XAS and XPS signatures for carbon-based materials in more realistic environments, building on large data sets of structural models generated by a machine-learning (ML) interatomic potential. The results indicate clear signatures: individual fingerprint XAS spectra and distinctive XPS binding energy distributions, both in terms of center and broadness of the signal, for chemically different groups. The results point out what kind of structural information can and cannot be extracted with X-ray spectroscopy. This study will enable a deeper physicochemical understanding of experimental data and ultimately theory-based identification and quantification of functional groups in carbonaceous materials.

AlkuperäiskieliEnglanti
Sivut9243-9255
Sivumäärä13
JulkaisuChemistry of Materials
Vuosikerta31
Numero22
DOI - pysyväislinkit
TilaJulkaistu - 26 marraskuuta 2019
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'Understanding X-ray Spectroscopy of Carbonaceous Materials by Combining Experiments, Density Functional Theory, and Machine Learning. Part I: Fingerprint Spectra'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Projektit

    Luotettavaa laskennallista sähkökemiaa tiheysfunktionaaliteoriaa sekä eritasoisia

    Caro Bayo, M.

    01/09/201731/08/2020

    Projekti: Academy of Finland: Other research funding

    FIRE: Sähkökemiaa ensimmäisistä periaatteista käsin

    Isoaho, N., Palomäki, T., Johansson, L., Caro Bayo, M., Laurila, T., Aarva, A. & Leppänen, E.

    01/09/201531/08/2018

    Projekti: Academy of Finland: Other research funding

    Lehtileikkeet

    Tailor-made carbon helps pinpoint hereditary diseases and correct medication dosage

    Anja Aarva, Miguel A. Caro, Tiina Laurila & Tomi Laurila

    14/11/201918/11/2019

    4 kohdetta/ Medianäkyvyys

    Lehdistö/media: Esiintyminen mediassa

    Siteeraa tätä