Understanding the Magnetic Microstructure through Experiments and Machine Learning Algorithms

Abhishek Talapatra*, Udaykumar Gajera*, Syam Prasad, Jeyaramane Arout Chelvane, Jyoti Ranjan Mohanty*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

5 Sitaatiot (Scopus)
40 Lataukset (Pure)

Abstrakti

Advanced machine learning techniques have unfurled their applications in various interdisciplinary areas of research and development. This paper highlights the use of image regression algorithms based on advanced neural networks to understand the magnetic properties directly from the magnetic microstructure. In this study, Co/Pd multilayers have been chosen as a reference material system that displays maze-like magnetic domains in pristine conditions. Irradiation of Ar+ ions with two different energies (50 and 100 keV) at various fluences was used as an external perturbation to investigate the modification of magnetic and structural properties from a state of perpendicular magnetic anisotropy to the vicinity of the spin reorientation transition. Magnetic force microscopy revealed domain fragmentation with a smaller periodicity and weaker magnetic contrast up to the fluence of 1014 ions/cm2. Further increases in the ion fluence result in the formation of feather-like domains with a variation in local magnetization distribution. The experimental results were complemented with micromagnetic simulations, where the variations of effective magnetic anisotropy and exchange constant result in qualitatively similar changes in magnetic domains, as observed experimentally. Importantly, a set of 960 simulated domain images was generated to train, validate, and test the convolutional neural network (CNN) that predicts the magnetic properties directly from the domain images with a high level of accuracy (maximum 93.9%). Our work has immense importance in promoting the applications of image regression methods through the CNN in understanding integral magnetic properties obtained from the microscopic features subject to change under external perturbations.

AlkuperäiskieliEnglanti
Sivut50318-50330
Sivumäärä13
JulkaisuACS Applied Materials and Interfaces
Vuosikerta14
Numero44
DOI - pysyväislinkit
TilaJulkaistu - 21 lokak. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Understanding the Magnetic Microstructure through Experiments and Machine Learning Algorithms'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä