Understanding Electromigration in Cu-CNT Composite Interconnects: A Multiscale Electrothermal Simulation Study

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

  • Jaehyun Lee
  • Salim Berrada
  • Fikru Adamu-Lema
  • Nicole Nagy
  • Vihar P. Georgiev
  • Jie Liang
  • Raphael Ramos
  • Hamilton Carrillo-Nunez
  • Dipankar Kalita
  • Katharina Lilienthal
  • Marcus Wislicenus
  • Reeturaj Pandey
  • Bingan Chen
  • Kenneth B.K. Teo
  • Goncalo Goncalves
  • Hanako Okuno
  • Benjamin Uhlig
  • Aida Todri-Sanial
  • Jean Dijon
  • Asen Asenov

Organisaatiot

  • University of Glasgow
  • Fraunhofer Center for Nanoelectronic Technologies
  • Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier
  • CNRS/IN2P3
  • AIXTRON Ltd.

Kuvaus

In this paper, we report a hierarchical simulation study of the electromigration (EM) problem in Cu-carbon nanotube (CNT) composite interconnects. This paper is based on the investigation of the activation energy and self-heating temperature using a multiscale electrothermal simulation framework. We first investigate the electrical and thermal properties of Cu-CNT composites, including contact resistances, using the density functional theory and reactive force field approaches, respectively. The corresponding results are employed in macroscopic electrothermal simulations taking into account the self-heating phenomenon. Our simulations show that although Cu atoms have similar activation energies in both bulk Cu and Cu-CNT composites, Cu-CNT composite interconnects are more resistant to EM thanks to the large Lorenz number of the CNTs. Moreover, we found that a large and homogenous conductivity along the transport direction in interconnects is one of the most important design rules to minimize the EM.

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut3884-3892
JulkaisuIEEE Transactions on Electron Devices
Vuosikerta65
Numero9
TilaJulkaistu - 2018
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Lataa tilasto

Ei tietoja saatavilla

ID: 27166847