Understanding and control of bipolar self-doping in copper nitride

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

  • Angela N. Fioretti
  • Craig P. Schwartz
  • John Vinson
  • Dennis Nordlund
  • David Prendergast
  • Adele C. Tamboli
  • Christopher M. Caskey
  • Filip Tuomisto
  • Florence Linez
  • Steven T. Christensen
  • Eric S. Toberer
  • Stephan Lany
  • Andriy Zakutayev

Organisaatiot

  • Colorado School of Mines
  • Fermi National Accelerator Laboratory
  • National Institute of Standards and Technology
  • Lawrence Berkeley National Laboratory
  • National Renewable Energy Laboratory

Kuvaus

Semiconductor materials that can be doped both n-type and p-type are desirable for diode-based applications and transistor technology. Copper nitride (Cu3N) is a metastable semiconductor with a solar-relevant bandgap that has been reported to exhibit bipolar doping behavior. However, deeper understanding and better control of the mechanism behind this behavior in Cu3N is currently lacking in the literature. In this work, we use combinatorial growth with a temperature gradient to demonstrate both conduction types of phase-pure, sputter-deposited Cu3N thin films. Room temperature Hall effect and Seebeck effect measurements show n-type Cu3N with 1017 electrons/cm3 for low growth temperature (≈35 °C) and p-type with 1015 holes/cm3-1016 holes/cm3 for elevated growth temperatures (50 °C-120 °C). Mobility for both types of Cu3N was ≈0.1 cm2/Vs-1 cm2/Vs. Additionally, temperature-dependent Hall effect measurements indicate that ionized defects are an important scattering mechanism in p-type films. By combining X-ray absorption spectroscopy and first-principles defect theory, we determined that VCu defects form preferentially in p-type Cu3N, while Cui defects form preferentially in n-type Cu3N, suggesting that Cu3N is a compensated semiconductor with conductivity type resulting from a balance between donor and acceptor defects. Based on these theoretical and experimental results, we propose a kinetic defect formation mechanism for bipolar doping in Cu3N that is also supported by positron annihilation experiments. Overall, the results of this work highlight the importance of kinetic processes in the defect physics of metastable materials and provide a framework that can be applied when considering the properties of such materials in general.

Yksityiskohdat

AlkuperäiskieliEnglanti
Artikkeli181508
Sivut1-10
Sivumäärä10
JulkaisuJournal of Applied Physics
Vuosikerta119
Numero18
TilaJulkaistu - 14 toukokuuta 2016
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu
TapahtumaInternational Conference on Defects in Semiconductors - Espoo, Suomi
Kesto: 27 heinäkuuta 201531 heinäkuuta 2015
Konferenssinumero: 28

Lataa tilasto

Ei tietoja saatavilla

ID: 6559642