Uncertainty quantification and reduction using sensitivity analysis and Hessian derivatives

Josefina Sánchez, Kevin Otto

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)
109 Lataukset (Pure)

Abstrakti

We study the use of Hessian interaction terms to quickly identify design variables that reduce variability of system performance. To start we quantify the uncertainty and compute the variance decomposition to determine noise variables that contribute most, all at an initial design. Minimizing the uncertainty is next sought, though probabilistic optimization becomes computationally difficult, whether by including distribution parameters as an objective function or through robust design of experiments. Instead, we consider determining the more easily computed Hessian interaction matrix terms of the variance-contributing noise variables and the variables of any proposed design change. We also relate the Hessian term coefficients to subtractions in Sobol indices and reduction in response variance. Design variable changes that can reduce variability are thereby identified quickly as those with large Hessian terms against noise variables. Furthermore, the Jacobian terms of these design changes can indicate which design variables can shift the mean response, to maintain a desired nominal performance target. Using a combination of easily computed Hessian and Jacobian terms, design changes can be proposed to reduce variability while maintaining a targeted nominal. Lastly, we then recompute the uncertainty and variance decomposition at the more robust design configuration to verify the reduction in variability. This workflow therefore makes use of UQ/SA methods and computes design changes that reduce uncertainty with a minimal 4 runs per design change. An example is shown on a Stirling engine design where the top four variance-contributing tolerances are matched with two design changes identified through Hessian terms, and a new design found with 20% less variance.

AlkuperäiskieliEnglanti
Otsikko47th Design Automation Conference (DAC)
KustantajaAmerican Society of Mechanical Engineers
Sivumäärä10
Vuosikerta3B
ISBN (elektroninen)978-0-7918-8539-0
DOI - pysyväislinkit
TilaJulkaistu - 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference - Virtual, Online
Kesto: 17 elok. 202119 elok. 2021
Konferenssinumero: 18

Conference

ConferenceASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
LyhennettäIDETC/CIE
KaupunkiVirtual, Online
Ajanjakso17/08/202119/08/2021

Sormenjälki

Sukella tutkimusaiheisiin 'Uncertainty quantification and reduction using sensitivity analysis and Hessian derivatives'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
  • Digitalisaatio tuotteen toiminnallisen laadun varmistuksessa

    Kinnunen, A. (Projektin jäsen), Otto, K. (Vastuullinen tutkija), Jalava, K. (Projektin jäsen), Sanchez Mosqueda, J. (Projektin jäsen), Uyan, T. (Projektin jäsen) & Björkman, Z. (Projektin jäsen)

    01/09/201731/12/2021

    Projekti: Academy of Finland: Other research funding

Siteeraa tätä