Abstrakti
A broad survey of the experimental database of neutral beam heated baseline H-modes and hybrid scenarios in the JET tokamak has established the ubiquity of non-diffusive momentum transport mechanisms in rotating plasmas. As a result of their presence, the normalized angular frequency gradient Rω/ω is higher than expected from momentum diffusion alone, by about unity in the core (r/a0.3), rising to near 5 close to the edge, where its contribution to the total gradient is comparable to the gradient associated with the diffusive flux. The magnitude and parameter dependences of the non-diffusive contribution to the gradient are consistent with a theoretically expected pinch, which has its origin in the vertical particle drift resulting from the Coriolis force. Linear gyrokinetic calculations of the pinch number RV/χ and the Prandtl number χ/χ i are in good agreement with the experimental observations, with similar dependences on R/L n, q and ε=r/R. A contribution due to residual stresses may also be present, but could not be identified with certainty.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 114024 |
Julkaisu | Nuclear Fusion |
Vuosikerta | 52 |
Numero | 11 |
DOI - pysyväislinkit | |
Tila | Julkaistu - marrask. 2012 |
OKM-julkaisutyyppi | A2 Katsausartikkeli tieteellisessä aikakauslehdessä |