Abstrakti
Recognizing human attributes in unconstrained environments is a challenging computer vision problem. State-of-the-art approaches to human attribute recognition are based on convolutional neural networks (CNNs). The de facto practice when training these CNNs on a large labeled image dataset is to take RGB pixel values of an image as input to the network. In this work, we propose a two-stream part-based deep representation for human attribute classification. Besides the standard RGB stream, we train a deep network by using mapped coded images with explicit texture information, that complements the standard RGB deep model. To integrate human body parts knowledge, we employ the deformable part-based models together with our two-stream deep model. Experiments are performed on the challenging Human Attributes (HAT-27) Dataset consisting of 27 different human attributes. Our results clearly show that (a) the two-stream deep network provides consistent gain in performance over the standard RGB model and (b) that the attribute classification results are further improved with our two-stream part-based deep representations, leading to state-of-the-art results.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings - 2018 International Conference on Biometrics, ICB 2018 |
Kustantaja | IEEE |
Sivut | 90-97 |
Sivumäärä | 8 |
ISBN (elektroninen) | 9781538642856 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 13 heinäk. 2018 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Biometrics - Gold Coast, Austraalia Kesto: 20 helmik. 2018 → 23 helmik. 2018 Konferenssinumero: 11 |
Conference
Conference | International Conference on Biometrics |
---|---|
Lyhennettä | ICB |
Maa/Alue | Austraalia |
Kaupunki | Gold Coast |
Ajanjakso | 20/02/2018 → 23/02/2018 |