Twenty-Five Years of Advances in Beamforming: From convex and nonconvex optimization to learning techniques

Ahmet M. Elbir*, Kumar Vijay Mishra, Sergiy A. Vorobyov, Robert W. Heath

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliReview Articlevertaisarvioitu

26 Sitaatiot (Scopus)

Abstrakti

Beamforming is a signal processing technique to steer, shape, and focus an electromagnetic (EM) wave using an array of sensors toward a desired direction. It has been used in many engineering applications, such as radar, sonar, acoustics, astronomy, seismology, medical imaging, and communications. With the advent of multiantenna technologies in, say, radar and communication, there has been a great interest in designing beamformers by exploiting convex or nonconvex optimization methods. Recently, machine learning (ML) is also leveraged for obtaining attractive solutions to more complex beamforming scenarios. This article captures the evolution of beamforming in the last 25 years from convex to nonconvex optimization and optimization to learning approaches. It provides a glimpse into these important signal processing algorithms for a variety of transmit-receive architectures, propagation zones, propagation paths, and multidisciplinary applications.

AlkuperäiskieliEnglanti
Sivut118-131
Sivumäärä14
JulkaisuIEEE Signal Processing Magazine
Vuosikerta40
Numero4
DOI - pysyväislinkit
TilaJulkaistu - 1 kesäk. 2023
OKM-julkaisutyyppiA2 Katsausartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Twenty-Five Years of Advances in Beamforming: From convex and nonconvex optimization to learning techniques'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä