Abstrakti
Electrically active brain regions can be located applying MUltiple SIgnal Classification (MUSIC) on magneto- or electroencephalographic (MEG; EEG) data. We introduce a new MUSIC method, called truncated recursively-applied-and-projected MUSIC (TRAP-MUSIC). It corrects a hidden deficiency of the conventional RAP-MUSIC algorithm, which prevents estimation of the true number of brain-signal sources accurately. The correction is done by applying a sequential dimension reduction to the signal-subspace projection. We show that TRAP-MUSIC significantly improves the performance of MUSIC-type localization; in particular, it successfully and robustly locates active brain regions and estimates their number. We compare TRAP-MUSIC and RAP-MUSIC in simulations with varying key parameters, e.g., signal-to-noise ratio, correlation between source time-courses, and initial estimate for the dimension of the signal space. In addition, we validate TRAP-MUSIC with measured MEG data. We suggest that with the proposed TRAP-MUSIC method, MUSIC-type localization could become more reliable and suitable for various online and offline MEG and EEG applications.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 73-83 |
Sivumäärä | 11 |
Julkaisu | NeuroImage |
Vuosikerta | 167 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 15 helmik. 2018 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Truncated RAP-MUSIC (TRAP-MUSIC) for MEG and EEG source localization'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Laitteet
-
Aalto NeuroImaging Infrastructure
Jousmäki, V. (Manager)
Perustieteiden korkeakouluLaitteistot/tilat: Facility