Tree species classification using within crown localization of waveform LiDAR attributes

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

  • Rosmarie Blomley
  • Aarne Hovi

  • Martin Weinmann
  • Stefan Hinz
  • Ilkka Korpela
  • Boris Jutzi

Organisaatiot

  • Karlsruhe Institute of Technology
  • University of Helsinki

Kuvaus

Since forest planning is increasingly taking an ecological, diversity-oriented perspective into account, remote sensing technologies are becoming ever more important in assessing existing resources with reduced manual effort. While the light detection and ranging (LiDAR) technology provides a good basis for predictions of tree height and biomass, tree species identification based on this type of data is particularly challenging in structurally heterogeneous forests. In this paper, we analyse existing approaches with respect to the geometrical scale of feature extraction (whole tree, within crown partitions or within laser footprint) and conclude that currently features are always extracted separately from the different scales. Since multi-scale approaches however have proven successful in other applications, we aim to utilize the within-tree-crown distribution of within-footprint signal characteristics as additional features. To do so, a spin image algorithm, originally devised for the extraction of 3D surface features in object recognition, is adapted. This algorithm relies on spinning an image plane around a defined axis, e.g. the tree stem, collecting the number of LiDAR returns or mean values of returns attributes per pixel as respective values. Based on this representation, spin image features are extracted that comprise only those components of highest variability among a given set of library trees. The relative performance and the combined improvement of these spin image features with respect to non-spatial statistical metrics of the waveform (WF) attributes are evaluated for the tree species classification of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and Silver/Downy birch (Betula pendula Roth/Betula pubescens Ehrh.) in a boreal forest environment. This evaluation is performed for two WF LiDAR datasets that differ in footprint size, pulse density at ground, laser wavelength and pulse width. Furthermore, we evaluate the robustness of the proposed method with respect to internal parameters and tree size. The results reveal, that the consideration of the crown-internal distribution of within-footprint signal characteristics captured in spin image features improves the classification results in nearly all test cases.

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut142-156
Sivumäärä15
JulkaisuISPRS Journal of Photogrammetry and Remote Sensing
Vuosikerta133
TilaJulkaistu - marraskuuta 2017
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

ID: 15913589