Transparency and Explainability of AI Systems: Ethical Guidelines in Practice

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

30 Sitaatiot (Scopus)
1674 Lataukset (Pure)

Abstrakti

[Context and Motivation] Recent studies have highlighted transparency and explainability as important quality requirements of AI systems. However, there are still relatively few case studies that describe the current state of defining these quality requirements in practice. [Question] The goal of our study was to explore what ethical guidelines organizations have defined for the development of transparent and explainable AI systems. We analyzed the ethical guidelines in 16 organizations representing different industries and public sector. [Results] In the ethical guidelines, the importance of transparency was highlighted by almost all of the organizations, and explainability was considered as an integral part of transparency. Building trust in AI systems was one of the key reasons for developing transparency and explainability, and customers and users were raised as the main target groups of the explanations. The organizations also mentioned developers, partners, and stakeholders as important groups needing explanations. The ethical guidelines contained the following aspects of the AI system that should be explained: the purpose, role of AI, inputs, behavior, data utilized, outputs, and limitations. The guidelines also pointed out that transparency and explainability relate to several other quality requirements, such as trustworthiness, understandability, traceability, privacy, auditability, and fairness. [Contribution] For researchers, this paper provides insights into what organizations consider important in the transparency and, in particular, explainability of AI systems. For practitioners, this study suggests a structured way to define explainability requirements of AI systems.

AlkuperäiskieliEnglanti
OtsikkoRequirements Engineering
AlaotsikkoFoundation for Software Quality - 28th International Working Conference, Proceedings
ToimittajatVincenzo Gervasi, Andreas Vogelsang
KustantajaSpringer
Sivut3-18
Sivumäärä16
ISBN (painettu)978-3-030-98463-2
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Working Conference on Requirements Engineering: Foundation for Software Quality - Birmingham, Iso-Britannia
Kesto: 21 maalisk. 202224 maalisk. 2022
Konferenssinumero: 28

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
KustantajaSpringer
Vuosikerta13216 LNCS
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Conference

ConferenceInternational Working Conference on Requirements Engineering
LyhennettäREFSQ
Maa/AlueIso-Britannia
KaupunkiBirmingham
Ajanjakso21/03/202224/03/2022

Sormenjälki

Sukella tutkimusaiheisiin 'Transparency and Explainability of AI Systems: Ethical Guidelines in Practice'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
  • Best paper award

    Koho, M. (Recipient), 25 toukok. 2014

    Palkinto: Palkinto tai huomionosoitus tuotoksesta

Siteeraa tätä