Training Language Models for Programming Feedback Using Automated Repair Tools

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

5 Sitaatiot (Scopus)
22 Lataukset (Pure)

Abstrakti

In introductory programming courses, automated repair tools (ARTs) are used to provide feedback to students struggling with debugging. Most successful ARTs take advantage of context-specific educational data to construct repairs to students’ buggy codes. Recent work in student program repair using large language models (LLMs) has also started to utilize such data. An underexplored area in this field is the use of ARTs in combination with LLMs. In this paper, we propose to transfer the repairing capabilities of existing ARTs to open large language models by finetuning LLMs on ART corrections to buggy codes. We experiment with this approach using three large datasets of Python programs written by novices. Our results suggest that a finetuned LLM provides more reliable and higher-quality repairs than the repair tool used for finetuning the model. This opens venues for further deploying and using educational LLM-based repair techniques.
AlkuperäiskieliEnglanti
OtsikkoArtificial Intelligence in Education
Alaotsikko24th International Conference, AIED 2023, Tokyo, Japan, July 3–7, 2023, Proceedings
ToimittajatNing Wang, Genaro Rebolledo-Mendez, Noboru Matsuda, Olga C. Santos, Vania Dimitrova
KustantajaSpringer
Sivut830–835
ISBN (elektroninen)978-3-031-36272-9
ISBN (painettu)978-3-031-36271-2
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Artificial Intelligence in Education - Tokyo, Japani
Kesto: 3 heinäk. 20237 heinäk. 2023
Konferenssinumero: 24

Julkaisusarja

NimiLecture Notes in Computer Science
KustantajaSpringer
Vuosikerta13916
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Conference

ConferenceInternational Conference on Artificial Intelligence in Education
LyhennettäAIED
Maa/AlueJapani
KaupunkiTokyo
Ajanjakso03/07/202307/07/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Training Language Models for Programming Feedback Using Automated Repair Tools'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä