Train Localization Environmental Scenario Identification Using Features Extracted from Historical Data

Tao Zhang*, Baigen Cai, Debiao Lu, Jian Wang, Yu Xiao

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)
64 Lataukset (Pure)

Abstrakti

The application of Global Navigation Satellite System (GNSS) on the railway greatly reduces the cost on train localization. However, the railway environment is complex and changes with the train movement, buildings, trees, railroad cuts and mountains will block and reflect the GNSS signals, which will bring errors to the GNSS-based train position estimation. This paper proposes a railway scenario identification method based on historical GNSS receiver observation data to identify scenarios along the railway. Firstly, a railway environment scenario parameter model library is established according to Feature of Sky Occlusion (FSO) of typical scenarios, apply historical GNSS observation data along the railway to establish the FSO models of scenario segments, and generate FSO feature sequences. The dynamic time warping algorithm (DTW) is used to match the FSO parameter model of the scenario segment with the FSO model library. This paper collected data from field experiments at Beijing Sanjiadian station to verify the algorithm. The scenario identification results showed that the scenario identification method based on DTW can effectively identify the railway scenarios.

AlkuperäiskieliEnglanti
OtsikkoChina Satellite Navigation Conference, CSNC 2021, Proceedings
ToimittajatChangfeng Yang, Jun Xie
KustantajaSpringer
Sivut12-21
Sivumäärä10
ISBN (painettu)978-981-16-3137-5
DOI - pysyväislinkit
TilaJulkaistu - 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaChina Satellite Navigation Conference - Nanchang, Kiina
Kesto: 22 toukok. 202125 toukok. 2021
Konferenssinumero: 12

Julkaisusarja

NimiLecture Notes in Electrical Engineering
Vuosikerta772 LNEE
ISSN (painettu)1876-1100
ISSN (elektroninen)1876-1119

Conference

ConferenceChina Satellite Navigation Conference
LyhennettäCSNC
Maa/AlueKiina
KaupunkiNanchang
Ajanjakso22/05/202125/05/2021

Sormenjälki

Sukella tutkimusaiheisiin 'Train Localization Environmental Scenario Identification Using Features Extracted from Historical Data'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä