Trace theorems for functions of bounded variation in metric spaces

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

  • P. Lahti
  • N. Shanmugalingam

Organisaatiot

  • University of Cincinnati

Kuvaus

In this paper we show existence of traces of functions of bounded variation on the boundary of a certain class of domains in metric measure spaces equipped with a doubling measure supporting a 1-Poincaré inequality, and obtain L1 estimates of the trace functions. In contrast with the treatment of traces given in other papers on this subject, the traces we consider do not require knowledge of the function in the exterior of the domain. We also establish a Maz'ya-type inequality for functions of bounded variation that vanish on a set of positive capacity.

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut2754-2791
Sivumäärä38
JulkaisuJournal of Functional Analysis
Vuosikerta274
Numero10
TilaJulkaistu - 15 toukokuuta 2018
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

ID: 30076876