Towards synthesizing grasps for 3D deformable objects with physics-based simulation

Tran Nguyen Le, Jens Lundell, Fares J. Abu-Dakka, Ville Kyrki

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaKonferenssiesitysScientificvertaisarvioitu

Abstrakti

Grasping deformable objects is not well researched due to the complexity in modelling and simulating the dynamic behavior of such objects. However, with the rapid development of physics-based simulators that support soft bodies, the research gap between rigid and deformable objects is getting smaller. To leverage the capability of such simulators and to challenge the assumption that has guided robotic grasping research so far, i.e., object rigidity, we proposed a deep-learning based approach that generates stiffness-dependent grasps. Our network is trained on purely synthetic data generated from a physics-based simulator. The same simulator is also used to evaluate the trained network. The results show improvement in terms of grasp ranking and grasp success rate. Furthermore, our network can adapt the grasps based on the stiffness. We are currently validating the proposed approach on a larger test dataset in simulation and on a physical robot.
AlkuperäiskieliEnglanti
Sivumäärä4
TilaJulkaistu - 12 heinäk. 2021
OKM-julkaisutyyppiEi sovellu
TapahtumaWorkshop on Deformable Object Simulation in Robotics - Virtual, Online
Kesto: 15 heinäk. 202115 heinäk. 2021
https://sites.google.com/nvidia.com/do-sim

Workshop

WorkshopWorkshop on Deformable Object Simulation in Robotics
KaupunkiVirtual, Online
Ajanjakso15/07/202115/07/2021
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Towards synthesizing grasps for 3D deformable objects with physics-based simulation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä