Towards photographic image manipulation with balanced growing of generative autoencoders

Ari Heljakka, Arno Solin, Juho Kannala

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

10 Sitaatiot (Scopus)


We present a generative autoencoder that provides fast encoding, faithful reconstructions (e.g. retaining the identity of a face), sharp generated/reconstructed samples in high resolutions, and a well-structured latent space that supports semantic manipulation of the inputs. There are no current autoencoder or GAN models that satisfactorily achieve all of these. We build on the progressively growing autoencoder model PIONEER , for which we completely alter the training dynamics based on a careful analysis of recently introduced normalization schemes. We show significantly improved visual and quantitative results for face identity conservation in CELEBA-HQ. Our model achieves state-of-the-art disentanglement of latent space, both quantitatively and via realistic image attribute manipulations. On the LSUN Bedrooms dataset, we improve the disentanglement performance of the vanilla PIONEER, despite having a simpler model. Overall, our results indicate that the PIONEER networks provide a way towards photorealistic face manipulation.

OtsikkoProceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020
ISBN (elektroninen)9781728165530
DOI - pysyväislinkit
TilaJulkaistu - maalisk. 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE Winter Conference on Applications of Computer Vision - Snowmass Village, Yhdysvallat
Kesto: 1 maalisk. 20205 maalisk. 2020


ConferenceIEEE Winter Conference on Applications of Computer Vision
KaupunkiSnowmass Village


Sukella tutkimusaiheisiin 'Towards photographic image manipulation with balanced growing of generative autoencoders'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä