Projekteja vuodessa
Abstrakti
We present a model-agnostic federated learning method for decentralized data with an intrinsic network structure. The network structure reflects similarities between the (statistics of) local datasets and, in turn, their associated local (“personal”) models. Our method is an instance of empirical risk minimization, with the regularization term derived from the network structure of data. In particular, we require well-connected local models, forming clusters, to yield similar predictions on a common test set. The proposed method allows for a wide range of local models. The only restriction put on these local models is that they allow for efficient implementation of regularized empirical risk minimization (training). Such implementations might be available in the form of high-level programming frameworks such as scikit-learn, Keras or PyTorch.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 31st European Signal Processing Conference, EUSIPCO 2023 - Proceedings |
Kustantaja | European Association For Signal and Image Processing |
Sivut | 1614-1618 |
Sivumäärä | 5 |
ISBN (elektroninen) | 978-94-645936-0-0 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2023 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | European Signal Processing Conference - Helsinki, Suomi Kesto: 4 syysk. 2023 → 8 syysk. 2023 Konferenssinumero: 31 https://eusipco2023.org/ |
Julkaisusarja
Nimi | European Signal Processing Conference |
---|---|
ISSN (painettu) | 2219-5491 |
Conference
Conference | European Signal Processing Conference |
---|---|
Lyhennettä | EUSIPCO |
Maa/Alue | Suomi |
Kaupunki | Helsinki |
Ajanjakso | 04/09/2023 → 08/09/2023 |
www-osoite |
Sormenjälki
Sukella tutkimusaiheisiin 'Towards Model-Agnostic Federated Learning over Networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
Intelligent Techniques in Condition Monitoring of Electromechanical Energy Conversion Systems
Jung, A. (Vastuullinen tutkija)
01/09/2020 → 31/08/2024
Projekti: RCF Academy Project