Towards Model-Agnostic Federated Learning over Networks

A. Jung*, S. Abdurakhmanova, O. Kuznetsova, Y. Sarcheshmehpour

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

We present a model-agnostic federated learning method for decentralized data with an intrinsic network structure. The network structure reflects similarities between the (statistics of) local datasets and, in turn, their associated local (“personal”) models. Our method is an instance of empirical risk minimization, with the regularization term derived from the network structure of data. In particular, we require well-connected local models, forming clusters, to yield similar predictions on a common test set. The proposed method allows for a wide range of local models. The only restriction put on these local models is that they allow for efficient implementation of regularized empirical risk minimization (training). Such implementations might be available in the form of high-level programming frameworks such as scikit-learn, Keras or PyTorch.

AlkuperäiskieliEnglanti
Otsikko31st European Signal Processing Conference, EUSIPCO 2023 - Proceedings
KustantajaIEEE
Sivut1614-1618
Sivumäärä5
ISBN (elektroninen)978-9-4645-9360-0
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEuropean Signal Processing Conference - Helsinki, Suomi
Kesto: 4 syysk. 20238 syysk. 2023
Konferenssinumero: 31
https://eusipco2023.org/

Julkaisusarja

NimiEuropean Signal Processing Conference
ISSN (painettu)2219-5491

Conference

ConferenceEuropean Signal Processing Conference
LyhennettäEUSIPCO
Maa/AlueSuomi
KaupunkiHelsinki
Ajanjakso04/09/202308/09/2023
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Towards Model-Agnostic Federated Learning over Networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä