Towards Mode Balancing of Generative Models via Diversity Weights

Sebastian Berns, Simon Colton, Christian Guckelsberger

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

24 Lataukset (Pure)

Abstrakti

Large data-driven image models are extensively used to support creative and artistic work. Under the currently predominant distribution-fitting paradigm, a dataset is treated as ground truth to be approximated as closely as possible. Yet, many creative applications demand a diverse range of output, and creators often strive to actively diverge from a given data distribution. We argue that an adjustment of modelling objectives, from pure mode coverage towards mode balancing, is necessary to accommodate the goal of higher output diversity. We present diversity weights, a training scheme that increases a model's output diversity by balancing the modes in the training dataset. First experiments in a controlled setting demonstrate the potential of our method. We discuss connections of our approach to diversity, equity, and inclusion in generative machine learning more generally, and computational creativity specifically. An implementation of our algorithm is available at https://github.com/sebastianberns/diversity-weights.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 14th International Conference on Computational Creativity (ICCC 2023)
ToimittajatAlison Pease, Joao Miguel Cunha, Maya Ackerman, Daniel G. Brown
KustantajaAssociation for Computational Creativity
Sivumäärä10
ISBN (elektroninen)978-989-54160-5-9
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Computational Creativity - Waterloo, Kanada
Kesto: 19 kesäk. 202323 kesäk. 2023
Konferenssinumero: 14
https://computationalcreativity.net/iccc23/

Conference

ConferenceInternational Conference on Computational Creativity
LyhennettäICCC
Maa/AlueKanada
KaupunkiWaterloo
Ajanjakso19/06/202323/06/2023
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Towards Mode Balancing of Generative Models via Diversity Weights'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä