Abstrakti
High-Definition (HD) maps are needed for robust navigation of autonomous vehicles, limited by the on-board storage capacity. To solve this, we propose a novel framework, Environment-Aware Normal Distributions Transform (EA-NDT), that significantly improves compression of standard NDT map representation. The compressed representation of EA-NDT is based on semantic-aided clustering of point clouds resulting in more optimal cells compared to grid cells of standard NDT. To evaluate EA-NDT, we present an open-source implementation that extracts planar and cylindrical primitive features from a point cloud and further divides them into smaller cells to represent the data as an EA-NDT HD map. We collected an open suburban environment dataset and evaluated EA-NDT HD map representation against the standard NDT representation. Compared to the standard NDT, EA-NDT achieved consistently at least 1.5× higher map compression while maintaining the same descriptive capability. Moreover, we showed that EA-NDT is capable of producing maps with significantly higher descriptivity score when using the same number of cells than the standard NDT.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) |
Kustantaja | IEEE |
Sivut | 5370-5377 |
Sivumäärä | 8 |
ISBN (elektroninen) | 978-1-6654-7927-1 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2022 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE/RSJ International Conference on Intelligent Robots and Systems - Kyoto, Japani Kesto: 23 lokak. 2022 → 27 marrask. 2022 https://iros2022.org/ |
Julkaisusarja
Nimi | Proceedings of the IEEE/RSJ international conference on intelligent robots and systems |
---|---|
ISSN (elektroninen) | 2153-0866 |
Conference
Conference | IEEE/RSJ International Conference on Intelligent Robots and Systems |
---|---|
Lyhennettä | IROS |
Maa/Alue | Japani |
Kaupunki | Kyoto |
Ajanjakso | 23/10/2022 → 27/11/2022 |
www-osoite |