Towards hardware-driven design of low-energy algorithms for data analysis

Indre Zliobaite, Jaakko Hollmen, Lauri Koskinen, Jukka Teittinen

    Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

    3 Sitaatiot (Scopus)

    Abstrakti

    In the era of "big" data, data analysis algorithms need to be efficient. Traditionally researchers would tackle this problem by considering "small" data algorithms, and investigating how to make them computationally more efficient for big data applications. The main means to achieve computational efficiency would be to revise the necessity and order of subroutines, or to approximate calculations. This paper presents a viewpoint that in order to be able to cope with the new challenges of the growing digital universe, research needs to take a combined view towards data analysis algorithm design and hardware design, and discusses a potential research direction in taking an intreated approach in terms of algorithm design and hardware design. Analyzing how data mining algorithms operate at the elementary operations level can help do design more specialized and dedicated hardware, that, for instance, would be more energy efficient. In turn, understanding hardware design can help to develop more effective algorithms.

    AlkuperäiskieliEnglanti
    Sivut15-20
    Sivumäärä6
    JulkaisuSIGMOD RECORD
    Vuosikerta43
    Numero4
    DOI - pysyväislinkit
    TilaJulkaistu - 1 joulukuuta 2014
    OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

    Sormenjälki Sukella tutkimusaiheisiin 'Towards hardware-driven design of low-energy algorithms for data analysis'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä