Towards Energy Efficient Control for Commercial Heavy-Duty Mobile Cranes: Modeling Hydraulic Pressures using Machine Learning

Abdolreza Taheri, Robert Pettersson, Pelle Gustafsson, Joni Pajarinen, Reza Ghabcheloo

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

A sizable part of the fleet of heavy-duty machinery in the construction equipment industry uses the conventional valve-controlled load-sensing hydraulics. Rigorous climate actions towards reducing CO2 emissions has sparked the development of solutions to lower the energy consumption and increase the productivity of the machines. One promising solution to having a better balance between energy and performance is to build accurate models (digital twins) of the real systems using data together with recent advances in machine learning/model-based optimization to improve the control systems. With a particular focus on real-world machines with multiple flow-controlled
actuators and shared variable-displacement pumps, this paper presents a generalized machine learning approach to modeling the working pressure of the actuators and the overall pump pressures. The procedures for deriving reaction forces and flow rates as important input variables to the surrogate models are described in detail. Using data from a real loader crane testbed, we demonstrate training and validation of individual models, and showcase the accuracy of pressure predictions in five different experiments under various utilizations and pressure levels.
AlkuperäiskieliEnglanti
OtsikkoSICFP 23 Proceedings
AlaotsikkoThe 18th Scandinavian International Conference on Fluid Power, Tampere, Finland 30 May - 1 June, 2023
ToimittajatTatiana Minav, Janne Uusi-Heikkilä
KustantajaTampereen yliopisto
ISBN (elektroninen)978-952-03-2911-2
ISBN (painettu)978-952-03-2910-5
TilaJulkaistu - 30 toukok. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaScandinavian International Conference on Fluid Power - Tampere, Suomi
Kesto: 30 toukok. 20231 kesäk. 2023
Konferenssinumero: 18

Conference

ConferenceScandinavian International Conference on Fluid Power
LyhennettäSICFP
Maa/AlueSuomi
KaupunkiTampere
Ajanjakso30/05/202301/06/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Towards Energy Efficient Control for Commercial Heavy-Duty Mobile Cranes: Modeling Hydraulic Pressures using Machine Learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä