Towards an Aggregator that Exploits Big Data to Bid on Frequency Containment Reserve Market

Christian Giovanelli, Xin Liu, Seppo Sierla, Valeriy Vyatkin, Ryutaro Ichise

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

14 Sitaatiot (Scopus)
376 Lataukset (Pure)

Abstrakti

The increased penetration of distributed and volatile renewable generation requires the demand-side to be actively involved in energy balancing operations. This paper proposes a solution in which big data and machine learning methods are employed to enhance the capabilities of a Virtual Power Plant to participate and intelligently bid into a demand response energy market. The energy market being investigated consists of the frequency containment reserve market. First, we define the core decision-making required to overcome the uncertainties in the frequency containment reserve market participation for a Virtual Power Plant. Then, we focus on forecasting the frequency containment reserve prices for the day-ahead. We analyze the price data, and identify and collect the relevant features for the prediction of the prices. In addition, we select several regression analysis methods to be utilized for the prediction. Finally, we evaluate the performance of the implemented methods by executing several experiments, and compare the the performance with the performance of a state of the art autoregression method.
AlkuperäiskieliEnglanti
OtsikkoProceedings IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society
KustantajaIEEE
Sivut7514-7519
Sivumäärä6
ISBN (painettu)9781538611272
DOI - pysyväislinkit
TilaJulkaistu - 1 marrask. 2017
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaAnnual Conference of the IEEE Industrial Electronics Society - Beijing, Kiina
Kesto: 29 lokak. 20171 marrask. 2017
Konferenssinumero: 43
http://iecon2017.csp.escience.cn/

Julkaisusarja

NimiProceedings of the Annual Conference of the IEEE Industrial Electronics Society
KustantajaIEEE
ISSN (painettu)1553-572X

Conference

ConferenceAnnual Conference of the IEEE Industrial Electronics Society
LyhennettäIECON
Maa/AlueKiina
KaupunkiBeijing
Ajanjakso29/10/201701/11/2017
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Towards an Aggregator that Exploits Big Data to Bid on Frequency Containment Reserve Market'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä