Abstrakti
Suffix trees provide for efficient indexing of numerous sequence processing problems in biological databases. We address the pivotal issue of improving the search efficiency of disk-resident suffix trees by improving the storage layout from a statistical learning viewpoint. In particular, we make the following contributions: we (a) introduce the Q-Optimal Disk Layout(Q-OptDL) problem in the context of suffix trees and prove it to be NP-Hard, and (b) propose an algorithm for improving the layout of suffix trees that is guaranteed to perform asymptotically no worse than twice the optimal disk layout.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Simulated Evolution and Learning - 8th International Conference, SEAL 2010, Proceedings |
Sivut | 711-715 |
Sivumäärä | 5 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2010 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Simulated Evolution and Learning - Kanpur, Intia Kesto: 1 jouluk. 2010 → 4 jouluk. 2010 Konferenssinumero: 8 |
Julkaisusarja
Nimi | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Vuosikerta | 6457 LNCS |
ISSN (painettu) | 0302-9743 |
ISSN (elektroninen) | 1611-3349 |
Conference
Conference | International Conference on Simulated Evolution and Learning |
---|---|
Lyhennettä | SEAL |
Maa/Alue | Intia |
Kaupunki | Kanpur |
Ajanjakso | 01/12/2010 → 04/12/2010 |